10.

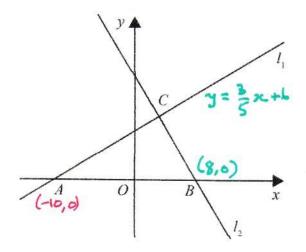


Figure 4

The line l_1 has equation $y = \frac{3}{5}x + 6$

The line l_2 is perpendicular to l_1 and passes through the point B(8,0), as shown in the sketch in Figure 4.

(a) Show that an equation for line l_2 is

$$5x + 3y = 40$$

(3)

Given that

- lines l_1 and l_2 intersect at the point C
- line l_1 crosses the x-axis at the point A
- (b) find the exact area of triangle ABC, giving your answer as a fully simplified fraction in the form $\frac{p}{a}$

(5)

(a) Gradient of $l_2 = -\frac{5}{3}$ as gradient of l_1 is $\frac{3}{5}$

But y=0 when x=8 as l2 passes through B => C = 40/3

So
$$\theta_2$$
 is $y = -\frac{5x}{3} + \frac{40}{3} \Rightarrow \frac{5x + 3y}{3} = 40$ as required

(b) Point A is on L, when
$$g_f = 0$$
 so $x = -\frac{30}{3} = -\frac{10}{2}$
Area of ABC = $\frac{1}{2}$ base xheight = $\frac{1}{2}$ (AB) x(y coord of C)

So we must find the y coordinate of c by finding the intersection of l, and lz

$$l_1: y = \frac{3}{5}x + 6$$

$$l_2$$
: $y = -\frac{5}{3}x + \frac{40}{3}$

$$(9+25)x = 40-18$$

$$=\frac{33}{17}+6=\frac{135}{17}$$

$$=\frac{1215}{17}$$