13. Relative to a fixed origin O

- point A has position vector 10i 3j
- point B has position vector $-8\mathbf{i} + 9\mathbf{j}$
- point C has position vector $-2 \mathbf{i} + p \mathbf{j}$ where p is a constant
- (a) Find \overrightarrow{AB}

(2)

(b) Find $|\overrightarrow{AB}|$ giving your answer as a fully simplified surd.

(2)

Given that points A, B and C lie on a straight line,

(c) (i) find the value of p,

(B) C lies on AB

(ii) state the ratio of the area of triangle AOC to the area of triangle AOB.

(-8i+9j) (a) $\overrightarrow{AB} = -\overrightarrow{OA} + OB$ = -(10i-3j) + (-8i+9j)= -18i + 12j

(10i-3j) (b) $|AB| = \sqrt{(-18)^2 + (12)^2}$ = $\sqrt{468} \le 36$ is a feet $= \sqrt{36 \times 13}$ = $6\sqrt{13}$

Gradient of AB = $-\frac{12}{18} = -\frac{2}{3}$

This must also be the gradient of AC if C is an AB

Gradient $g AC = -\left(\frac{p+3}{12}\right) = \frac{\text{Change in } j}{\text{Change in } i}$ as C is at (-2i+pj)

So
$$-\left(\frac{p+3}{12}\right) = -\frac{2}{3}$$

 $p+3 = 24 = 8$
 $\Rightarrow \qquad p = 5$

