(b) Hence show that g(x) can be written in the form $g(x) = (x + 2) (ax + b)^2$, where a and b are integers to be found.

Figure 2 shows a sketch of part of the curve with equation y = g(x)

(c) Use your answer to part (b), and the sketch, to deduce the values of x for which

(i)
$$g(x) \leq 0$$

(ii) $g(2x) = 0$
(a) When $x = -2$ $g(x) = -32 - 48 + 30 + 50 = 0$
Hence $(x + 2)$ is a factor of $g(x)$
(b) Divide by $(x+2)$ to find the remaining factor(s) of $g(x)$
 $\frac{4x^2 - 20x + 25}{x + 2}$
 $x + 2$ $\frac{4x^3 - 12x^2 - 15x + 50}{x + 20x^2 - 15x}$
 $-20x^2 - 15x$
 $-20x^2 - 15x$
 $-20x^2 - 15x$
 $36x + 50$
 $25x + 5$
So $g(x) = (x + 2)(4x^2 - 20x + 25)$
 $= (x + 2)(2x - 5)^2$ which is of the required form
 $a = 2 \quad b = -5$
(c) $g(x) = 0$ when $x = -2$ and when $x = 2\cdot5$.
(i) Hence $g(x) \leq 0$ when $x = -2$ or $2\cdot5$
(ii) $g(x) = 0$ when $x = -2$ or $2\cdot5$
So $g(2x) = 0$ when $x = -1$ or $1\cdot 25$

(2)

(4)