In this question you must show all stages of your working.

Solutions relying entirely on calculator technology are not acceptable.

The air pressure, $P \text{ kg/cm}^2$, inside a car tyre, t minutes from the instant when the tyre developed a puncture is given by the equation

 $P = k + 1.4 \mathrm{e}^{-0.5t} \qquad t \in \mathbb{R} \qquad t \ge 0$

where k is a constant.

8.

Given that the initial air pressure inside the tyre was 2.2 kg/cm²

(a) state the value of k.

From the instant when the tyre developed the puncture,

(b) find the time taken for the air pressure to fall to 1 kg/cm² Give your answer in minutes to one decimal place.

(3)

100

(1)

(c) Find the rate at which the air pressure in the tyre is decreasing exactly 2 minutes from the instant when the tyre developed the puncture. Give your answer in kg/cm² per minute to 3 significant figures.

(a)
$$P = k + 1.4e^{-0.5t}$$
 When $t = 0$ $P = k + 1.4t$
giving $k = 2.2 - 1.4t$
 $= 0.8$ $kgcm^{-2}$
(b) $P = 1$ have so $1 = 0.8 + 1.4e^{-0.5t}$
 $0.3 = e^{-0.5t}$
 $1.4t$
Take ln of both sides $ln(\frac{1}{7}) = -0.5t \Rightarrow t = 3.9$ man
(c) $P = 0.8 + 1.4e^{-0.5t}$
 $dP = 1.4(-0.5)e^{-0.5t}$
 $dL = \frac{d}{dx} = \frac{\alpha e^{\alpha x}}{dx}$
When $t = 2$
 $dP = -0.7e^{-1} = -0.7 = -0.258$ $kgcm^{-2}/min$
 $dt = \frac{1}{2}$
 $dP = -0.7e^{-1} = -0.7 = -0.258$ $kgcm^{-2}/min$
 $dt = \frac{1}{2}$

26